Calmodulin inhibits interaction of actin with MAP2 and Tau, two major microtubule-associated proteins.

نویسندگان

  • S Kotani
  • E Nishida
  • H Kumagai
  • H Sakai
چکیده

We have previously shown that microtubule-associated protein 2 (MAP2) and Tau, two major microtubule-associated proteins, interact with actin differently as measured by low-shear viscosity and that their activities are modified by phosphorylation (Nishida, E., Kotani, S., Kuwaki, T., and Sakai, H. (1982 in Biological Functions of Microtubules and Related Structures (Sakai, H., Mohri, H., and Borisy, G. G., eds) pp. 297-309, Academic Press, Japan). In the present study we further examined their interaction using turbidimetry, electron microscopy, low- and high-shear viscometry. MAP2 increased the low-shear viscosity of actin filament but had weaker effect on high-shear viscosity and turbidity of actin filaments. In contrast, Tau reduced high-shear viscosity of actin filaments and enhanced the turbidity which were due to formation of actin filament bundles as shown by electron microscopy. We conclude that MAP2 is a gelation factor, while Tau is a bundling factor. A well-known Ca2+-dependent regulatory protein, calmodulin, inhibited both MAP2-actin and Tau-actin interaction in a Ca2+-dependent manner. The calmodulin-dependent inhibition was canceled by higher concentrations of MAP2 or Tau, and calmodulin had no effect on the viscosity of actin filament alone, indicating that this inhibition is based on the stoichiometric interaction of calmodulin with MAP2 or Tau.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAP2c, but Not Tau, Binds and Bundles F-Actin via Its Microtubule Binding Domain

BACKGROUND MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly under...

متن کامل

Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton.

Microtubule-associated protein 2 (MAP2) is a neuronal phosphoprotein that promotes net microtubule growth and actin cross-linking and bundling in vitro. Little is known about MAP2 regulation or its interaction with the cytoskeleton in vivo. Here we investigate the in vivo function of three specific sites of phosphorylation on MAP2. cAMP-dependent protein kinase activity disrupts the MAP2-microt...

متن کامل

Phosphorylation-dependent Localization of Microtubule-associated Protein MAP2c to the Actin Cytoskeleton□V

Microtubule-associated protein 2 (MAP2) is a neuronal phosphoprotein that promotes net microtubule growth and actin cross-linking and bundling in vitro. Little is known about MAP2 regulation or its interaction with the cytoskeleton in vivo. Here we investigate the in vivo function of three specific sites of phosphorylation on MAP2. cAMP-dependent protein kinase activity disrupts the MAP2–microt...

متن کامل

The protein phosphatase PP2A/Bα binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies.

The predominant brain microtubule-associated proteins MAP2 and tau play a critical role in microtubule cytoskeletal organization and function. We have previously reported that PP2A/Bα, a major protein phosphatase 2A (PP2A) holoenzyme, binds to and dephosphorylates tau, and regulates microtubule stability. Here, we provide evidence that MAP2 co-purifies with and is dephosphorylated by endogenous...

متن کامل

Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments.

We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 19  شماره 

صفحات  -

تاریخ انتشار 1985